Publications

2007

Kim, T. Y., J. Dolbow, and T. Laursen. “A mortared finite element method for frictional contact on arbitrary interfaces.” Computational Mechanics 39, no. 3 (February 2007): 223–35.

Mourad, H. M., J. Dolbow, and I. Harari. “A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces.” International Journal for Numerical Methods in Engineering 69, no. 4 (January 22, 2007): 772–93. https://doi.org/10.1002/nme.1788.

Chang, Debby P., John E. Dolbow, and Stefan Zauscher. “Switchable friction of stimulus-responsive hydrogels.” Langmuir : The ACS Journal of Surfaces and Colloids 23, no. 1 (January 2007): 250–57. https://doi.org/10.1021/la0617006.

2006

Dolbow, J. “The Melosh Competition.” Finite Elements in Analysis and Design 42, no. 7 SPEC. ISS. (April 1, 2006): 569. https://doi.org/10.1016/j.finel.2005.11.001.

Ji, H., H. Mourad, E. Fried, and J. Dolbow. “Kinetics of thermally induced swelling of hydrogels.” International Journal of Solids and Structures 43, no. 7–8 (April 1, 2006): 1878–1907. https://doi.org/10.1016/j.ijsolstr.2005.03.031.

2005

Mourad, H. M., J. Dolbow, and K. Garikipati. “An assumed-gradient finite element method for the level set equation.” International Journal for Numerical Methods in Engineering 64, no. 8 (October 28, 2005): 1009–32. https://doi.org/10.1002/nme.1395.

Dolbow, J., E. Fried, and H. Ji. “A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels.” Computer Methods in Applied Mechanics and Engineering 194, no. 42–44 (October 15, 2005): 4447–80. https://doi.org/10.1016/j.cma.2004.12.004.

Dolbow, J., E. Fried, and A. Q. Shen. “Point defects in nematic gels: The case for hedgehogs.” Archive for Rational Mechanics and Analysis 177, no. 1 (July 1, 2005): 21–51. https://doi.org/10.1007/s00205-005-0359-4.

Dolbow, J. E. “The Melosh competition.” Finite Elements in Analysis and Design 41, no. 7–8 (April 1, 2005): 685. https://doi.org/10.1016/j.finel.2004.12.001.

2004

Ji, H., and J. E. Dolbow. “On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method.” International Journal for Numerical Methods in Engineering 61, no. 14 (December 14, 2004): 2508–35. https://doi.org/10.1002/nme.1167.

Dolbow, J. E., and A. Devan. “Enrichment of enhanced assumed strain approximations for representing strong discontinuities: Addressing volumetric incompressibility and the discontinuous patch test.” International Journal for Numerical Methods in Engineering 59, no. 1 (January 7, 2004): 47–67. https://doi.org/10.1002/nme.862.

Dolbow, J., E. Fried, and H. Ji. “Chemically induced swelling of hydrogels.” Journal of the Mechanics and Physics of Solids 52, no. 1 (January 1, 2004): 51–84. https://doi.org/10.1016/S0022-5096(03)00091-7.

2003

Bellec, J., and J. E. Dolbow. “A note on enrichment functions for modelling crack nucleation.” Communications in Numerical Methods in Engineering 19, no. 12 (December 1, 2003): 921–32. https://doi.org/10.1002/cnm.641.

2002

Dolbow, J. E., and J. C. Nadeau. “On the use of effective properties for the fracture analysis of microstructured materials.” Engineering Fracture Mechanics 69, no. 14–16 (September 1, 2002): 1607–34. https://doi.org/10.1016/S0013-7944(02)00052-8.

Ji, H., D. Chopp, and J. E. Dolbow. “A hybrid extended finite element/level set method for modeling phase transformations.” International Journal for Numerical Methods in Engineering 54, no. 8 (July 20, 2002): 1209–33. https://doi.org/10.1002/nme.468.

Dolbow, J. E., and M. Gosz. “On the computation of mixed mode stress intensity factors in functionally graded materials.” International Journal of Solids and Structures 39, no. 9 (April 30, 2002): 2557–74. https://doi.org/10.1016/S0020-7683(02)00114-2.

Merle, R., and J. Dolbow. “Solving thermal and phase change problems with the eXtended finite element method.” Computational Mechanics 28, no. 5 (January 1, 2002): 339–50. https://doi.org/10.1007/s00466-002-0298-y.

2001

Dolbow, J., N. Moës, and T. Belytschko. “An extended finite element method for modeling crack growth with frictional contact.” Computer Methods in Applied Mechanics and Engineering 190, no. 51–52 (October 26, 2001): 6825–46. https://doi.org/10.1016/S0045-7825(01)00260-2.

2000

Daux, C., N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko. “Arbitrary branched and intersecting cracks with the extended finite element method.” International Journal for Numerical Methods in Engineering 48, no. 12 (August 30, 2000): 1741–60. https://doi.org/10.1002/1097-0207(20000830)48:123.0.CO;2-L.

Dolbow, J., N. Moës, and T. Belytschko. “Discontinuous enrichment in finite elements with a partition of unity method.” Finite Elements in Analysis and Design 36, no. 3 (January 1, 2000): 235–60. https://doi.org/10.1016/S0168-874X(00)00035-4.

Dolbow, J., N. Moës, and T. Belytschko. “Modeling fracture in Mindlin-Reissner plates with the extended finite element method.” International Journal of Solids and Structures 37, no. 48 (January 1, 2000): 7161–83. https://doi.org/10.1016/S0020-7683(00)00194-3.

1999

Dolbow, J., and T. Belytschko. “Volumetric locking in the element free Galerkin method.” International Journal for Numerical Methods in Engineering 46, no. 6 (October 30, 1999): 925–42. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:63.0.CO;2-Y.

Moës, N., J. Dolbow, and T. Belytschko. “A finite element method for crack growth without remeshing.” International Journal for Numerical Methods in Engineering 46, no. 1 (September 10, 1999): 131–50. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:13.0.CO;2-J.

Moës, N., J. Dolbow, and T. Belytschko. “A finite element method for crack growth without remeshing.” International Journal for Numerical Methods in Engineering 46, no. 1 (September 10, 1999): 131–50. https://doi.org/10.1002/(sici)1097-0207(19990910)46:13.3.co;2-a.

Dolbow, J., and T. Belytschko. “Numerical integration of the Galerkin weak form in meshfree methods.” Computational Mechanics 23, no. 3 (January 1, 1999): 219–30. https://doi.org/10.1007/s004660050403.